
The Th2/Th17 pathway in asthma  
and the relevant clinical significance

Review

SUMMARY
Asthma is a heterogeneous chronic disease of the airways, charac-
terized by different phenotypes. The principal pathophysiological 
pathway appears to be Th2 dependent eosinophilic inflammation 
mainly produced by T helper 2 (Th2) cells. More recently epithelial 
innate lymphoid cells (ILC2) cell shave been implicated as another 
source of Th2 cytokines leading to bronchial eosinophilia without 
previous allergen sensitization. Another pathogenic pathway is the 
non-Th2 type, mediated by Th1 and especially Th17 lymphocytes, 
responsible for neutrophilicin flammation. Furthermore, recent 
studies have associated Th-17 cells with allergic inflammation and 
eosinophilic asthma. Ongoing clinical trials are expected to further 
elucidate the role of different cells in the evolution of asthmatic 
inflammation and also the role of established or novel potential 
biomarkers in routine clinical practice aiming to maximize drug ef-
ficacy in asthmatics. In the present review, we summarize the above 
mentioned mechanisms focusing on T-helper cell subset plasticity 
which led to the identification of dual positive Th2/Th17 inflammation.
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InTrOduCTIOn

Asthma is a heterogeneous disease of the airways characterized by 
airway inflammation and bronchial hyperresponsiveness (BHR) leading to 
reversible airway obstruction1. This chronic disease affects many people, 
men and women, young and old, worldwide. It is defined by a history of 
respiratory symptoms (such as wheeze, shortness of breath, chest tight-
ness and cough), which vary over time and in intensity2. The majority of 
asthma patients are well controlled by conventional therapies such as 
inhaled corticosteroids. However, about 5-10% of asthma patients have 
a severe and complex condition, described as “fatal or near fatal asthma”, 
“severe asthma”, “steroid-dependent asthma”, “steroid-insensitive asthma”, 
“difficult to control asthma”, “poorly controlled asthma”, “brittle asthma”, or 
“irreversible asthma”3. 
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For over 20 years, asthma has been considered a Th2-
type dependent allergic disease, characterized by Th2 cells 
producing high levels of type 2 interleukins (ILs), such as 
IL-4, IL-5 and IL-13. Besides, other studies suggested that 
Th-1 cells producing interferon (IFN)-γ display a regula-
tory function in allergic asthma4. Although the Th-1/Th2 
mechanism provided the initial framework for asthma 
management, the discovery of a distinct subpopulation 
of CD4+ T cells that produce IL-17A, IL-17F, IL-22, TNF-α, 
and IL-21 led to a major revision of the Th-1/Th2 hypoth-
esis (Figure 1). Th17 cells are differentiated and activated 
by several cytokines such as transforming growth factor 
TGFβ, IL-6 together with IL-21 and IL-235. 

In addition to Th2 and Th17 cells, the heterogeneity of 
asthmatic patients suggests that also other factors must 
be involved in regulating asthma inflammation. Indeed, 
recent studies have implicated innate lymphoid cells (ILCs) 
of non-T, non-B effector cells that are antigen-nonspecific, 
have conserved effector cell functions and play crucial 
roles in tissue homeostasis, repair and remodeling and 
in innate immunity to pathogenic and nonpathogenic 
microorganisms6. ILCs are classified into three categories 
(Type 1, Type 2 and Type 3 ILCs) depending on their ability 
to produce Th1, Th2 and Th17 cell-associated cytokines6. 
In specific, ILC type 2 (ILC2) have been associated with 

asthma by producing a broad array of cytokines, includ-
ing IL-5, IL-13 and IL-177. 

Asthma was initially categorized in terms of ‘allergic’ 
or "nonallergic" asthma. A distinction was then made 
when sputum became available between eosinophilic 
and non-eosinophilic asthma2. The last decade, a global 
approach for the understanding of asthma pathogenesis 
has introduced the concept of phenotypes as a grouping of 
clinical/physiologic characteristics, triggering factors and 
inflammatory components2. A new approach includes the 
addition of genetic or blood biomarker for the classifica-
tion of disease entities within the asthma syndrome which 
led to the introduction of the term endotype3. Indeed, 
asthma endotyping has shed light into key pathogenic 
mechanisms for this complex disorder8.

Recent discoveries revealed possible subgroups of 
Th2 high asthma that differ in terms of both the presence 
of underlying allergy and the potential source of type 2 
cytokines. The current concept involves Th2-high asthma, 
eosinophilic, characterized by high levels of type 2 inter-
leukins (ILs), and involves type 2 helper T cells (Th2 cells), 
mast cells, basophils, B cells and ILC2s4,8,9.The fact that 
ILC2 produce Th2 cytokines could explain severe eosino-
philic inflammation, when classical Th2 mediated allergy 
is absent, which is further supported in other studies10. 

On the other hand lays Th2-low/Non-Type 2 as non 
eosinophilic asthma, where Th17 cells are involved (IL-17A, 
IL-23, IL-22, IL-6), mostly characterized by neutrophilic 
inflammation11. An interesting issue for Th2 and Th17 cells 
is the qualitative difference concerning their response to 
glucocorticoid treatment, as IL-17 production was shown 
to be less susceptible to inhibition by glucocorticoids 
when compared to IL-4 and IL-5 production12.

According to recent literature possible endotypes as-
sociated with eosinophilic phenotypes include, early onset 
allergic asthma with or without obesity, aspirin sensitive 
asthma and late onset eosinophilic asthma, exacerbation 
prone asthma, and exercise induced asthma,whereas 
those associated with non-eosinophilic asthma and for 
which the pathobiologic pathways are not yet defined, 
include those patients with obesity-related late onset 
asthma, asthma with fixed airflow obstruction and very 
little inflammation (paucigranulocytic), and asthma as-
sociated with neutrophilia11.

BIOMArkers In AsThMA

A biomarker is defined as “a characteristic that is 
objectively measured and evaluated as an indicator of 

FigURe 1. Type 2 Innate Lymphoid Cells and Th cell subsets 
involved in allergic and non-allergic inflammation in asthma. 
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normal biological processes, pathogenic processes or 
pharmacological responses to a therapeutic intervention”9. 
Cytokines play a significant role in the pathogenesis and 
chronic inflammation of the airways in asthma and there-
fore, interleukins as biomarkers could identify endotypes 
and subtypes of asthma, reflecting the predominant 
pathophysiological mechanism13. The use of biomarkers 
can potentially help avoid unnecessary morbidity from 
high-dose corticosteroid therapy, and allow the most ap-
propriate and cost-effective use of targeted therapies14. As 
cytokines include markers of inflammation, several studies 
have been trying to identify molecular endotypes based 
on serum cytokine profile15. However, the persistent airway 
inflammation in asthma is caused by a large variety of 
cytokines that recruit, activate and perpetuate the inflam-
matory cells in the asthmatic airways. As a result, several 
attempts to inhibit inflammatory cytokines in asthma with 
blocking antibodies have shown poor results so far and 
besides studies of targeted therapy in non-phenotyped 
asthma did not show profound or even any efficacy16. 
Furthermore, it is a fact that there is no consensus how 
to best identify asthma endotypes and what therapy to 
use for a given endotype. Apart from cytokine profile, 
the use of blood eosinophils can facilitate individualized 
treatment and management of asthma.

Th2-specific biomarkers identified so far include spu-
tum/blood eosinophils, total serum IgE, the fraction of 
exhaled nitric oxide (FeNO) and bronchial epithelium-
derived proteins such as periostin and DPP411. The first 
biomarker proposed to predict corticosteroid response 
was the eosinophil count in sputum and blood17. Further-
more, total serum IgE is used specifically to identify allergic 
asthma phenotype2. However, IgE has a low sensitivity and 
correlates poorly with eosinophilic inflammation18. FeNO 
is also a biomarker of Th2 inflammation19 and is suggested 
to be used as a predictor of steroid responsiveness more 
consistently than other parameters20. According to recent 
literature, in patients with mild to severe asthma, blood 
eosinophils have the highest accuracy in the identifica-
tion of sputum eosinophilia when compared to serum 
periostin and exhaled nitric oxide (FeNO)21. Indeed, serum 
periostin, exhaled nitric oxide and blood eosinophil counts 
are the most promising biomarkers until now that could 
identify patients patients most likely to derive benefit 
from biologic agents targeting IgE, IL-5 and IL-4/1322.

The combined evaluation of FeNO and peripheral blood 
eosinophil counts represent two significant biomarkers of 
asthma, comparable to sputum eosinophil count and are 

often used to distinguish asthma phenotypes and even 
identify responders to inhaled corticosteroid treatment2,23. 
An count of >400 eosinophils/μL is associated with more 
severe asthma24.Concerning the non Th2 pathway bio-
markers, data are limited compared to Th2 type. Sputum 
neutrophils, mixed granulocytic and paucigranulocytic 
patterns include the most commonly used biomarkers25.

Th2 cytokines
Th2 cytokines (IL-4, IL-5, IL-9, IL-10, and IL-13) have a 

substantial effect on the pathogenesis of atopic diseases26. 
It is currently suggested that apart from Th2 cells, ILC2s 
are also responsible for the production of the majority 
of Th2 cytokines in the airway27.

IL-4/IL-13 
Th2 cytokines IL-4 and IL-13 share significant pathways 

and many biological activities concerning asthma. In 
specific, they play an important role in the identification 
of the presence of eosinophilic inflammation and also are 
key factors in IgE synthesis by B cells, mucus production, 
bronchial fibrosis and airway hyperresponsiveness in 
asthma28,29. There is a plethora of studies associating IL-4, 
IL-13 and asthma. When comparison was made between 
asthmatics and healthy controls, levels of IL-mRNA, pro-
tein levels in serum, bronchoalveolar lavage fluid (BAL), 
bronchial biopsies and exhaled breath condensate were 
found higher in asthmatics30-34. Similarly in other studies, 
increased IL-13 mRNA and protein levels are also found 
in sputum, BAL and bronchial biopsies of patients with 
asthma when compared to controls35-37.

Furthermore, it is well-known that single-nucleotide 
polymorphisms (SNP) can be used to assess genetic dis-
orders. A recent meta-analysis showed that IL-4 C-589T 
and C-33T were associated with asthma in Europeans38. 
As for IL-13, two SNPs, positioned at regions +2044G/A 
and +1923C/T have been suggested to play critical role 
in the development of asthma39-41. 

Anti-IL-13 and anti-IL-13/anti-IL-4 receptors targeted 
therapies with humanized monoclonal antibodies are cur-
renlty used as add-on therapy in patients with Th2-high 
inflammation with uncontrolled asthma despite maxi-
mum therapy. Specific studies have shown that Th2-high 
and especially periostin-high groups of asthmatics with 
moderate-to-severe uncontrolled asthma are suggested 
to compose the group that could benefit from anti-IL-13 
therapy42. Anti-IL-13 biologic agents (anrukinzumab, leb-
rikizunab and tralokinumab), are currently under clinical 



177PNEUMON Number 3, Vol. 31, July - September 2018

evaluation to further elucidate the use of predictive Th-2 
biomarkers43.

Besides, IL-4 and IL-13 share some structural similarities 
and they bind the IL-4Ra/IL-13Ra1 receptor complex by 
which the transcription factor STAT-6 is activated44. Based 
on this concept, biologic agent such as dupilumab that 
target the dual cytokines IL-4/13 may be more encourag-
ing approach for those patients suffering from refractive 
difficult-to-control eosinophilic asthma. Indeed, recently 
Wenzel et al reported that dupilumab increased lung func-
tion and reduced severe exacerbations in patients with 
uncontrolled persistent asthma irrespective of baseline 
eosinophil count and had a favourable safety profile45. 
More recently, another study reported that in patients 
with glucocorticoid-dependent severe asthma, dupilumab 
treatment reduced the rate of severe exacerbations and 
the use of oral steroids along with increasing the FEV1

46. 
Significantly lower rates of severe asthma exacerbations, 
as well as better lung function and asthma control were 
also reported in another study in patients treated with 
dupilumab47. 

IL-5
IL-5 is produced by CD4 + Th2 lymphocytes and ILC2 

cells and, to a lesser extent, also by natural killer T (NKT) 
cells, mast cells, and eosinophils themselves48. Multiple 
studies have demonstrated the link between IL-5 and 
asthma as higher IL-5 mRNA levels49 and IL-5 levels in 
sputum50 have been associated with increasing eosino-
phil production or acute asthmatic exacerbations51. As 
for genetics, IL-5 C-746T was found to influence atopic 
outcomes52. Based on the above, IL-5 has been considered 
a suitable target for add-on biological therapies of severe 
eosinophilic asthma53,54. In particular, the anti-IL-5 anti-
bodies developed, include mepolizumab and reslizumab, 
and the IL-5 receptor antagonist benralizumab which are 
evaluated for the treatment of refractory eosinophilic 
asthma55-57. Apart from mepolizumab and reslizumab, 
already FDA approved55, benralizumab has also recently 
obtained the approval of FDA on the basis of several 
successful randomized controlled trials58.

IL-17A/IL-23
A distinct subpopulation of CD4+ T cells produce Th-17 

cells that by secreting IL-17, orchestrate the recruitment 
of neutrophil granulocytes in the lungs59. Furthermore, 
IL-17 contribute to the development of airway fibrosis 
during asthma by enhancing the production of profibrotic 

cytokines, proangiogenic factors, and collagen60. Besides, 
in vitro studies investigating the role of epithelial-mes-
enchymal transition (EMT) in asthma have shown IL-17 
synergization with IL-4 and TGF-β promotes EMT with the 
expression of mesenchymal markers61,62.

Th17 cells produce IL-17A, IL-17F, IL-21 and IL-22 
cytokines59. IL-17A has been involved in severe asthma 
characterized by airway intense neutrophil infiltration 
and less responsive to corticosteroids59,63. Furthermore, 
these steroid-insensitive patients could be classified as 
a Th2 low phenotype of asthma2. Clinical studies have 
shown that levels of IL-17A is sputum, bronchoalveolar 
lavage fluid (BALF) and serum of asthmatic patients are 
significant higher in asthmatics than in healthy subjects 
and that these are correlated with the severity of disease64. 
Additionally, in a study on pre-school children with history 
and physical exam in favor of asthma which cannot be 
tested by spirometry, they concluded that IL-23 serum 
levels might be an auxiliary biomarker for the diagnosis 
of asthma65.

Recently, Fattahi et al showed that atopy is associated 
with lower numbers of IL-17 cells in asthmatic airways66. 
Current data suggest that IL-17 has also been implicated 
in Th2 cell-mediated eosinophilic airway inflammation in 
mouse models of asthma67 along with increased levels 
of IL-2368 or in asthmatic patients with allergy after a 
challenge with house dust mite69. Furthermore, recently 
Camargo et al reported that inhibition of IL-17 even in 
exacerbated asthmatic patients significantly contributed 
to the control of Th1/Th2/Th17 inflammation, chemokine 
expression, extracellular matrix remodeling, and oxidative 
stress in a murine experimental asthma model exacerbated 
by Lipopolysaccharide (LPS)70. As for genetics, a recent 
meta-analysis concerning the association between IL-17A 
polymorphisms and asthma risk suggested that the IL-
17A -737C/T polymorphism provides protection against 
the disease, whereas the IL-17A -197G/A polymorphism 
does not contribute to asthma risk71. 

However, so far, results from clinical trials targeting 
IL-17 Receptor (Brodalumab) including moderate to 
severe asthmatics, showed no improvement in asthma 
outcomes. This fact could be apparently attributed to 
inadequate selection of patients with asthma72. More 
specifically, although there was no effect of brodalumab 
on the primary outcome (the Asthma Control Question-
naire score), researchers,based on a subgroup analysis, 
suggested a new phenotype including patients with high 
reversibility of FEV1 in response to albuterol and a new 
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endotype which is IL-17R-dependent60. In future trials 
targeting IL-17 pathway, the selection of patients based 
on sputum neutrophilia could exclude Th2 high asthmatics 
that are less likely to respond to an IL-17-targeted therapy.

Dual positive Th2/Th17 cells
Athough T-helper cells were thought to be fully dif-

ferentiated, expressing a master regulatory transcription 
factor and their development from naive CD4 cells was 
considered to be lineage specific73, Cosmi et al demon-
strated that there is great plasticity in human Th17 cells 
even toward the Th2 phenotype, suggesting the existence 
of CD4+ T cells able to produce both Th17 related (IL-17A) 
and Th2 (IL-4) related cytokines74. Besides, several in vitro 
studies and animal studies suggest that T-helper cell 
subsets display plasticity by changing their transcription 
factor or by expressing multiple transcription factors75-79.

Asthmatic patients can suffer from a predominant 
eosinophilic inflammation usually seen in mild-to-mod-
erate disease, from neutrophilic inflammation in more 
severe disease or even mixed eosinophilic/neutrophilic 
inflammatory response80. The underlying T cell response 
is predominated by Th2, Th17, or a mixed Th2/Th17 cell 
immune response. 

A recent study showed that asthma is associated with 
a higher frequency of dual-positive Th2/Th17 cells in BAL 
fluid12. They concluded that Th2/Th17 (predominant) 
subgroup of asthmatic patients manifested glucocorti-
coid resistance in vitro and also had the greatest airway 
obstruction and hyperreactivity compared with the Th2 
(predominant) and Th2/Th17 (low) subgroups. Moreover, 
in experimental animal models, IL-17 has not only been 
involved to produce airway intense neutrophil infiltration 
but to exacerbate Th2 cell mediated eosinophilic airway 
inflammation and hyperresponsiveness67,68. 

However, in another study, Choy et al investigated 
the potential of Th2 cytokine suppression in promoting 
TH17 responses in a preclinical model of allergen-induced 
asthma and concluded that IL-13 and IL-17A reciprocally 
regulate the expression of their target pathways in the 

lung81. In specific, IL-13 stimulation repressed the expres-
sion of the Th17 genes, with a trend for a similar repressive 
effect of IL-17A stimulation on Th2 genes.

Furthermore, in an effort to discover the possible 
mechanism of severe late-onset hypereosinophilic phe-
notype, ILC2 activation along with dual positive Th2/Th17 
inflammation has been proposed11. Besides, recent data 
suggest that combination therapies targeting both path-
ways may maximize therapeutic efficacy across a patient 
population comprising both Th2 and Th17 endotypes12.

COnCLusIOns And FuTure perspeCTIves 

As new research data concerning the different T helper 
lymphocyte pathogenic pathways are being developed 
in the asthmatic inflammation cascade, new effective 
individualized therapies in severe asthma are urgently 
needed to block specific inflammatory pathways using 
monoclonal antibodies. The only approved therapies 
so far include anti-IL-5 IgG (Mepolizumab, Reslizumab, 
Benralizumab) for severe eosinophilic asthma and anti-
IgE (Omalizumab) for the treatment of severe allergic 
asthma. There is none approved biomarker for Non-Type 
2/Th2 low asthma.One could possibly further suggest that 
combination therapies targeting both pathways might 
maximize therapeutic efficacy across a patient population 
comprising both Th2 and Th17 endotypes. Clinically, the 
ability to identify a Th2 or Th17 high or a mixed asthma 
phenotype on the basis of testing blood eosinophils 
may facilitate the use of effective biologically targeted 
approaches in asthmatic patients. The fact that analyzing 
the cytokine pattern in serum samples does not give us 
information on the source of the assessed cytokine may 
reflect the significance of local environment like lung tis-
sues or intracellular molecular methods in analyzing the 
cytokine levels.But meanwhile, the feasibility of serum 
sampling as a noninvasive method to analyze cytokine 
levels has directed the interests toward noninvasive 
methods rather than invasive ones.
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ΠΕΡΙΛΗΨΗ

Tο μονοπάτι Th2/Th17 στο άσθμα και η κλινική του σημασία

Καλλιόπη Δόμβρη1, Γεώργιος Τζημαγιώργης2, Δέσποινα Παπακώστα1

1Πνευμονολογική Κλινική, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Γ.Ν.Θ. «Γ. Παπανικολάου», Θεσσαλονίκη, 
2Εργαστήριο Βιολογικής Χημείας, Σχολή Επιστημών Υγείας, Τμήμα Ιατρικής, Αριστοτέλειο Πανεπιστήμιο 

Θεσσαλονίκης

Το άσθμα είναι μια ετερογενής χρόνια νόσος των αεραγωγών, που χαρακτηρίζεται από διαφορετικούς 
φαινοτύπους. Η κύρια παθοφυσιολογική οδός είναι εξαρτώμενη από την Th2 ηωσινοφιλική φλεγμονή που 
παράγεται κυρίως από βοηθητικά T2 λεμφοκύτταρα (Th2). Πρόσφατες βιβλιογραφικές αναφορές προτεί-
νουν τα μη ευαισθητοποιημένα λεμφοκύτταρα του βρογχικού επιθηλίου (innate lymphoid cells, ILC2) ως 
μία άλλη πηγή Th2 κυτταροκινών, με αποτέλεσμα την παραγωγή ηωσινοφίλων χωρίς προηγούμενη αντι-
γονική ευαισθητοποίηση. Άλλο παθοφυσιολογικό μονοπάτι είναι η μη Th2 φλεγμονή που εξελίσσεται μέσω 
των Th1 λεμφοκυττάρων και των Th17 που εμπλέκονται στην ουδετεροφιλική φλεγμονή. Όμως, πρόσφα-
τες μελέτες έχουν συσχετίσει και τα Th17 κύτταρα με την αλλεργική φλεγμονή και το ηωσινοφιλικό άσθμα. 
Οι τρέχουσες κλινικές μελέτες αναμένεται να διευκρινίσουν περαιτέρω τον ρόλο των διαφόρων κυττάρων 
στην εξέλιξη της ασθματικής φλεγμονής και επίσης τον ρόλο των καθιερωμένων ή νέων πιθανών βιοδει-
κτών στην καθημερινή κλινική πρακτική με στόχο τη μεγιστοποίηση της αποτελεσματικότητας των αντι-
ασθματικών φαρμάκων. Στην παρούσα επισκόπηση, συνοψίζουμε τους προαναφερθέντες μηχανισμούς, 
επικεντρώνοντας στην πλαστικότητα κι ευελιξία των υποπληθυσμών των Τ-βοηθητικών κυττάρων και  
στην αναγνώριση της διπλής Th2/Th17 θετικής φλεγμονής.
Πνεύμων 2018, 31(3):174-182.
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